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Abstract  This paper firstly works out basic differential equations of piezoelectric
materials expressed in terms of potential functions, which are introduced in the very
beginning. These equations are primarily solved through Laplace transformation, semi-
infinite Fourier sine transformation and cosine transformation. Secondly, dual equations
of dynamic cracks problem in 2D piezoelectric materials are established with the help
of Fourier reverse transformation and the introduction of boundary conditions. Finally,
according to the character of the Bessel function and by making full use of the Abel
integral equation and its reverse transform, the dual equations are changed into the
second type of Fredholm integral equations. The investigation indicates that the study
approach taken is feasible and has potential to be an effective method to do research on
issues of this kind.
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Introduction

Notable achievements have been obtained in the field of static damage and fracture behavior
of piezoelectric materials, which is easily concluded from representational investigations made
by Wang!:2, Zhoul®!, and Pakl4, et al. With more and more interest shown in this issue,
the dynamic fracture analysis of the piezoelectric medium has become a newly rising field.
Khutoryansky and Sosal®l, took the lead in providing the governing equations and basic solutions
to the electro-elastic transient problem in the piezoelectric material. Houl® and Chenl”!, et al.
investigated the transient response to anti-plane cracks in the piezoelectric medium. However,
for 3D or plane dynamic fracture mechanics problems in piezoelectric materials, the decoupled
analysis of the governing equations cannot be carried out because of the anisotropy of the
materials. Consequently, by introducing functions of displacement and electrical potential, this
paper investigates basic equations and dual equations of 2D dynamic problems in piezoelectric
materials and, in particular, explores several skills in working out their solutions.
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1 Expression of dynamic equation and potential function in piezoeleétric
materials

It is assumed that plane xzQy is anisotropic and the inertia force is considered without
any attention paid to the effect of body force and body charge. The constitutive equation of
piezoelectrics can be written as

Oij = CijkiVkl ~ kij Bk, (1)
D; = ek + €k Bk, (2)

where c¢;j,e;; and ¢;; are elastic constants, piezoelectric constants, and dielectric constants,
respectively; while 05, 7;;, D; and E; are the components of stress, strain, electric displacement
and electric field, respecitvely. The geometric equation is

Wi = (i +ui)/2, Ei=—p, (3)

where u; = u;(x,y,t) is the component of displacement functions; ¢ = ¢(z,y,t) is the electric
potential function. They are the function of z,y and ¢. The governing equation is

jii = plij, Dj; =0. (4)
Substituting Eqgs.(1)—(3) into Eq.(4), the governing equations are obtained as
( H%u, 0u 8%y, 0?p

g o + 6443—2:c (c13 + C44)a By + (e1s + 631)@ = piiy,
%uy 8%y 0% & .
€33 o 2 RS e oz2 Y+ (c13 +C44) + €553 +€33ﬁ = piy, (5)
0? 0%u (92 o? 0?%p
| ¢33 a:Zy tensss y + (e15 + 631)6 5y 1 azf €5z = 0.

The equations above are the coupled field ones of the 2D problem in isotropic piezoelectric
materials, in which the elastic displacement component u; = u;(z,y,t) and electric potential
v = ¢(z,y,t) are basic unknown variables.

We introduce potential functions ®;(z,y,t) and X;(z,y,t) denoted by

o0 0% 9% 80, 0Xi 0%, o
R R T oz’ ¥ Oy Or
Substituting Eq.(6) into Eq.(5), two equations in terms of ®;(z,y,t) and X;(z,y,t) can be
derived as

62<I> 62‘I> )

4,5+ B = Oy, =12 (7a)
%X %X 8%®; 0%® .

€11 o2 +53382 UJBZJ+V782, j=12, (7b)

where

Ai = cii(esszerr — e1se33) — (€15 + €31)[(2caa + c13)e11 + e15(2e15 + €31)],
Az = (esse11 — e1se33)(c11 — 013 — aa) — (€15 + €31)(Cast s + e15€33),
B1 = (2c4q + c13)(e33e11 — e15€33) — (€15 + €31)(Cazer1 + e3zers),
By = caa(essen1 — e1sess) — (e1s + e31){(cas — c13 — caa)ess + (ess — ens ~ e31)ess),
C1 = [(e3s — e15 — €31)e11 — €15€33]p,

= [esze11 — (2e15 + €31)es3)p,
Uy =2e5+es1, Vi=ess, Uz=e5 Vz=e3z3—e€15—es31.
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For 2D problems in ordinary isotropic piezoelectric materials, the coefficients A;, B; and Ci
in Eq.(7a) are all positive or negative, so are the coefficients Az, By and Cs. It is concluded
that Eq.(7a) has the same form with the wave equation. Substituting Eq.(6) into Egs.(1)-(3)
the corresponding components of strain, electric field, stress and electric displacement are

_ 0, P _ 0 0%, _ 0t 0 50 @
Yoo = 52 T Gzdy’ YT B2 920y’ VT “9z0y | Oy 022
92X, 92X, 92X, 02X,
o= ooyt o2 VT o T may ©)
( 920, 920, 92, 0%®, X, 0°X,
o = en(Gor + o5, 3G~ o) e (G~ aay)
20, 9°% 82®, 00 82X, 8%*X
Oy = 013(—8;'2'l + 693812/) + 633(—8-?/—2'1' - 61_812;) + 633(“552—1 - awa;), (10)
820, 0%, 0°0, 02X, 82X,
2y = Caa(2 - i ,
| 7oy = cuy 5+ 55~ g ) tenlGg, T B )
r 020, 020, 02, 02X, 6°X,
e =e15(2 - —en(at - S5, |
< D 615( axay + By2 8.'1/'2 ) Ell(axay axz ) (11)
8%d, 0%d, 826, 0%, %X, 82X,
D —_
| Dy=ealgz + Bxay)+€33( 2 8x6y)+633( a? axay)'

From what was discussed above, it is concluded that solving the 2D dynamic problem in the
isotropic piezoelectric materials can be transformed into working for appropriate ®;(z,y,t) and
X;(z,y,t) to satisfy Eq.(7). Then according to Eqs.(6), (8)—(11), the components of the coupled
fields can be obtained. It is certain that, for different problems, the initial conditions and the
boundary conditions still need to be considered. Therefore, the combination of Eqs.(7) and (6)
becomes the so-called general solutions to the potential functions of the 2D dynamic problem
in isotropic piezoelectric materials. Since ®;(z,y,t) and X;(z,y,t) are required to satisfy
Eq.(7), the elastic displacement function u; = u;j(z,y,t) and the electric potential function
¢ = p(z,y,t) obtained from Eq.(6) must satisfy the equation group (5).

2 Coupled equations in problem of type I crack

Next, we will discuss the I-type crack problem in the piezoelectric material in terms of the
application of the approach mentioned above. Several assumptions are made for this problem:
(i) the z-axis is directed along the line of the crack; (ii)L = 2a; (iii) the center of the crack is
coincident with the coordinate origin; (iv) the medium is free of load at infinity, and the impact
load is imposed on the up surface as well as the down surface. Because of the symmetry, only
a quarter of the plane needs to be considered. The boundary conditions can be written as

Oyy(2,0,t) = —0pH(t), 0gy(z,0,t) =0, 0<zr<a, t>0, (12a)
D,(z,0,t) = ~DoH(t), O<z<a,t>0, (12b)
uy(z,0,t) =0, 0gy(x,0,t) =0, z>a,t>0, (13a)
(z,0,t) =0, z>a,t>0, (13Db)
oij(z,y,t) =0, at infinity, ¢ > 0, (14a)
D;(z,y,t) =0, at infinity, ¢ > 0, (14b)

where H(t) is Heaviside unit-step function. It is assumed that the initial conditions of the
piezoelectric medium are

Uj(ﬂv,y, O) = aj(x’yao) =0, (153‘)
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o(z,y,0) = ¢(z,9,0) = 0. (15b)

For potential functions ®;(z,y,t) and X;(z,y,t), both Laplace transformations and their
reverse transformations are made, while for the differential equation group (7) only Laplace
transform is performed. According to the initial condition (15), we can derive

oo 89} 2%

AjW-}-BjW: D q)j, i=12, (16&)
Xy 02Xy ey 0%@;

N5 9z 2 + €33 a 2 Uj B2 +V7 ayg y J= 1,2. (16b)

As the problem is symmetric and the electric potential function is a scalar one, the potential
functions have following properties:

®1($7 Y t) = <I>1(—z',y,t), (1)2(1'7 Y t) = —<I>2(—1',y,t);
Xl(xay,t) = Xl(_m7 Y, 1), X2(x’ y,t) = —Xz(—:l,‘,y,t).

For the equation group (16), Fourier cosine transformation is made when j = 1, while Fourier
sine transform is made when j = 2. Thus, the following equations can be obtained:

52 ,
Bj—— 3 2 (A s% + C;p* ) =0, 7=1,2, (17a)
*X; -, (AV; — B;U;)s® + C;Vip? ~
. 2vx _ ] * -
€33 ay; —en s’ X = 4 éj ¢y, j=1,2. (17b)

By applying the boundary conditions at infinite, @;(s, y,p) and X $(s,9,p) can be evaluated as
follows:

{<I> 7(s,4,p) = Fj(s,p) exp(~wjy), j=1,2, (18)

X3 (s,y,p) = G(s,p) exp(—Ay) + H;(s,p)Fj(s,p) exp(—wgy) i=12,

where

= \/(Aj32 +Cip?)/Bj, A= ens?/ess,

H;(s,p) = (Vjw] — Ujs®)/(easw] — eu1s?).

Fourier cosine reverse transformations are made for the image functions &3(s,y,p) and
X3(s,y,p) in Eq. (18), and at the same time, Fourier sine reverse transformations are made for
the image functions ®%(s,y,p) and X3(s,y,p). After these steps, we have

’ . 2 o
#i(eup) = = [ Fio.p)exp(-uny) cos(az)ds,

@) =2 | "~ Fa(s,p) exp(—way) sin(sz)ds,

(X3 = 2 [ 16(5,5)expl=Aa) + Hi(o,p)Fs (5, 5) expl—woy)] cos(sa)ds
) = (20)
L X3(z,y,p) = ’72;/0 [G(s, p) exp(—Ay) + Ha(s, p) Fa(s, p) exp(—woy)] sin(sz)ds.
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Making Laplace transformations for the boundary conditions (12) and (13), we can obtain

0,,(2,0,p) = —00/p, 03,(2,0,p) =0, 0<z<a, (21a)
Dy (z,0,p) = —Do/p, 0<z<a, (21b)
uy(2,0,p) =0, o0;,(z,0,p) =0, z > a, (22a)
¢*(z,0,p) =0, T > a. (22b)

We make Laplace transformations for Eq.(6) and Eqgs.(8)-(11), and then substitute Egs.(19)
and (20) into them. By applying the symmetry and the boundary condition 03,(2,0,p) =0,
—o0 < x < 400, we can obtain

_wiHi(s,p)Fi(s,p) + sHa(s,0) Fo(s,p)  Caa[28w1 i (s,p) + (w3 + 5*) Fa(s,p)]

G(S,p) = A+s 6153()\+8)

(23)

According to the boundary conditions u;(z, 0, p) = 0, ¢*(x,0,p) = 0,z > a, we can obtain
/Ooo [w1F1(s,p) + sFa(s,p)] cos(sx)ds =0, z > a, (24a)
/Ooo[/\G(s,p) + w1 Hi(s,p)F1(s,p) + sG(s,p) + sHa(s,p)F2(s,p)| cos(sx)ds, x >a. (24b)
Substituting Eq.(23) into Eq.(24b) and comparing with Eq.(24a), we can obtain
: /Ooo[wlFl(s,;;) + w?s~1Fy(s,p)] cos(sz)ds =0, > a. (25)

According to the boundary conditions o3, (,0,p) = —00/p, Dy (x,0,p) = —Do/p,0 < z < a,
and Eq.(23), we can get

/ [Tll(svp)Fl (S7p) + T12(S7p)F2(Sap)] cos(sx)ds = 7;_(;0’ 0<z<a,
0
(26)
o D
/ [T21(5’p)Fl (s,p) + TQ?(Sap)FQ(Sap)] COS(S(E)dS = %;)27 <z < a,
0

where
T11(s,p) = c138” — caaw} — esawi(wr — A)Hi(s,p) + 24/ 11633 casessery swi,
Ti2(8,p) = (€13 — ¢33)sw2 — e3zs(wz — A)Ha(s,p) + \/61155310446336;51 (w2 + %),
T21(s,p) = e318% — eaaw? + e33wy(wi — N Hi1(s,p) — 2v/E1183300e€ 15 8w,

Ta2(s,p) = (€31 — ea3)swa + €338(w2 — A)Ha(s,p) — VEr1E33ca4eTs (Wh + 52).

Consequently, solving such a problem can be transformed into searching for F} (s, p) to satisfy
the coupled integral equations (24a), (25) and (26).

3 Solutions of dual integral equations

We assume that

' {gl(s,p)=w1F1(3,p)+SF2(S,p),

s 1 (27)
92(s,p) = w1 F1(s,p) + wys™ Fu(s,p).
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Then, we can obtain

2 .2
F1(S,p) — 8 g2(37p) w2g1(8,p)

Wy (32 - UJ%) ’ (28)
S S, — 8 S
Fz(S,p) gl( 52)_“).%2( p)

Substituting cos(sz) = \/mxs/2J_; /5(sz), Eqgs.(27) and (28) into Egs.(24a), (25) and (26), the
following dual integral equations can be derived:

(o 0]
/ \/ggl(s7p)']——l/2(sz)d8 = 05 T > a,
0

o0 (29)
/ \/Egz(S,P)J—l/z(SI)dS =0, z>a,
0
/ s*[ma1g1(s, p) + m1292(8, P)|J1/2ds = Tho(z), 0<z<a,
/ (30)

o0
/ 52[m2191(3,P) + maaga(s,p)|J_1/2ds = Tao(z), 0<z<a,
0

where J, (sz) is the v-order Bessel function, while

V7o _ vVmDo

Tio(z) = Voo’ Tao(z) = Vaip
— _ Ta(s,p)wis — 1.1(s, p)ws _ Tu(s,p)s = Tha(s, pJun
mn = ml;(S,P) = wi s(s2 — wg)\/g » ma2(sp) = wi(s? — wg)\/E ’
_ Toa(s, p)wis — Tay (s, p)wd . To1(s, p)s — Taa(s, p)wi
ma(s,p) = wis(s? — wl)y/s » ma(sp) = wi(s% —w3)y/s ,

t1(z) and t2(z) are expressed as
ti(z) = Tyo(z) + /0°° 32[((X(Cl/141)1/4\/1_7)_1 —ma1)91(s,p) — m12g2(s,p)]J_1/2(sx)ds,

oo
ta(z) = Tao(z) + / S1(((C2/A2)Y*\/B) ™t — maz)ga(s,p) — m2191(s,p)|d-1/2(sz)ds,
0
(31)
where x must be a positive constant. Substituting Eq.(31) into Eq.(30), we can obtain
/ 5201(5,0)) 1 j2(s2)d = 11 (@)x(C1/A) YA VF, O<z<a,
0

% (32)
/0 5°92(,P)I-1/2(s2)dz = t2(2)x(C2/A2)/* /B, 0< 1z <a.

"The unknown functions g1 (s, p) and g, (s, p) are expressed as the integral of the new unknown
functions ¢1(&,p) and ¢2(&, p) as follows:

05(s,p) = T 514 / VEb3(E,p)T1ja(s0L)de, (33)

where ¢1(£,p) and ¢2(£, p) must sat.lsfy
lim £7'¢;(¢,p) = (34)

§—0+
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The disconnected integral formulas of Bessel function are as follows'8l:

/mJA%NAMM“W*@=0,0<r<& (35a)
0

. B (2 — p2YN k-1
/o IA(ré)J (e dE = 2A—(Z—1TAF)(A —p)’

where I'(z) is T function and A > p > —1 must be satisfied. Substituting Eq.(33) into Eq.(29)
and changing the integral order, we can obtain

/ V'sg;(s,p)I-1/2(s) )ds = T / VE;i(€,p / s14J14(50€)I 1 jo(sz)dsdE.

According to the disconnected integral formulas of Eq.(35), the equation above equals zero.
So Eq.(29) can be satisfied automatically. By applying the differential formula of the Bessel
function®!,

0<b<r, (35b)

d

E[Z_"Ju(z)] = —z""Ju+1(2),

the subsection integral is made for the right side of Eq.(33). Because of Eq.(34), the following
equation can be derived:

\/_¢J(§ D)
¢’ (asg)>/4

Substituting the equation above into Eq.(32) and applying the disconnected formulas of Eq.(35),
the Abel-type integral equation is derived as

ad;)Vir\/x z/a 1 d..
Yo = et | T eI 0 <E<afa. ©)

55(6,9) = ~ e {05 1PN ajalas) = [ (as€)?/43ayalost) M)

By using the Abel-type integral equation and its reverse transformation formulal'® and speci-
fying

20\ /40320 (1 /4 z/a 1
( '](()LAj;?;ur\/(E yi(0) = /0 (o - a?€%)/ de FE ot

r(£) can be expressed as

h(z) =

—2sin(=3n/4) d
T d€ Jo

Consequently, we can obtain

(60" 2%/ *xp* L (1/2) /‘"f VatiE)
(aAj)1/47r2 5 (a2£2—x2)1/4

Substituting Eq.(31) into Eq.(37) and specifying
B1 = [(€C))' 12 xp**T(1/2 /[(ady)M 477,

r(§) = aﬁ(a2§2 — %)™ zh(z)dr = d%[ﬁ'l/“d)j(ﬁ,p)]-

$;(&,p) = (37)

we can obtain

;(§,p)
(38a)
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Making the integral and subsection integral for the right s1de of Eq.(38a) and using identical
equation

t
[ 2 050) e = 2 @ o), T/ =7, (88

second type Fredholm integral equations can be obtained as follows:

Al .
1/4 — 7 h (5’ ) / [K11¢1 (n,p) + K12¢2(77,p)]dn — 0_454a1/4£3/400

1/ ! 1 ' (39)
\/—021/4 — o)+ / (K211 (7, p) + Ka2¢2(n, p)ldn = 0.454a'/463/4 Dy,

where the integrants Kj; of the integral equations are

K (€m,7) = 04890 /B [ slmus (5,0 = ((Co/2) VB a(s0 a(som)is
Kia(€,m,p) = 0.489a%/Ey /0 " smaa(s,p)T1ja(sa€) 1 ja(sam)ds,
Ko (€, p) = 0.489a% /&1 /0 ) smz1(,p)J1/4(sa€)J1/a(sam)ds,
Kanl6,.0) = 0489 V/&n | stna(5,0) = (x(Co/ ) VB s a(50€) s a(san)ds.

Changing Eq (39) into algebraic equations and solving them by Matlab program functions
can be derived. The detail solution process is shown in Ref.[11].

4 Conclusion

The reference [12] has indicated the existing mathematics problem in the integral transform
of the dynamic crack for ordinary materials. This paper successfully resolved the problem, and
at the same time, developed a kind of approach to solve such problems.

In this paper, the basic equations of dynamic problems in piezoelectric materials are ex-
pressed by three introduced potential functions, and the differential equations are solved through
Laplace transformation and Fourier transformation, which are based on mature and meticulous
mathematical theories and methods. Coupled integral equations of the dynamic problem are
established for the type I crack under the impact load in piezoelectric materials, and the ap-
proach to changing coupled integral equations into second type Fredholm ones is investigated
in detail. The approach presented in this paper was determined to be feasible and expected to
be used to study the dynamic crack problem in piezoelectric materials.
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